Abstract
Recent studies using long-run restrictions question the validity of the technology-driven real business cycle hypothesis. We propose an alternative identification that maximizes the contribution of technology shocks to the forecast-error variance of labor productivity at a long but finite horizon. In small-sample Monte Carlo experiments, our identification outperforms standard long-run restrictions by significantly reducing the bias in the short-run impulse responses and raising their estimation precision. Unlike its long-run restriction counterpart, when our Max Share identification technique is applied to U.S. data, it delivers the robust result that hours worked responds negatively to positive technology shocks.
Issue Section:
Articles
This content is only available as a PDF.
© 2014 The President and Fellows of Harvard College and the Massachusetts Institute of Technology
2014
You do not currently have access to this content.