We study the finite sample behavior of Lasso-based inference methods such as post double Lasso and debiased Lasso. We show that these methods can exhibit substantial omitted variable biases (OVBs) due to Lasso not selecting relevant controls. This phenomenon can occur even when the coeffcients are sparse and the sample size is large and larger than the number of controls. Therefore, relying on the existing asymptotic inference theory can be problematic in empirical applications. We compare the Lasso-based inference methods to modern highdimensional OLS-based methods and provide practical guidance.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary data

You do not currently have access to this content.