This study proposes an econometric framework to interpret and empirically decompose the difference between IV and OLS estimates given by a linear regression model when the true causal effects of the treatment are nonlinear in treatment levels and heterogeneous across covariates. I show that the IV–OLS coefficient gap consists of three estimable components: the difference in weights on the covariates, the difference in weights on the treatment levels, and the difference in identified marginal effects that arises from endogeneity bias. Applications of this framework to return-to-schooling estimates demonstrate the empirical relevance of this distinction in properly interpreting the IV–OLS gap.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary data

You do not currently have access to this content.