Abstract
We study treatment-effect estimation using panel data. The treatment may be non-binary, non-absorbing, and the outcome may be affected by treatment lags. We make a parallel-trends assumption, and propose event-study estimators of the effect of being exposed to a weakly higher treatment dose for ℓ. periods. We also propose normalized estimators, that estimate a weighted average of the effects of the current treatment and its lags. We also analyze commonly-used two-way-fixed-effects regressions. Unlike our estimators, they can be biased in the presence of heterogeneous treatment effects. A local-projection version of those regressions is biased even with homogeneous effects.
This content is only available as a PDF.
© 2024 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
2024
The President and Fellows of Harvard College and the Massachusetts Institute of Technology
You do not currently have access to this content.