Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Giorgio E. Primiceri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
The Review of Economics and Statistics (2015) 97 (2): 436–451.
Published: 01 May 2015
Abstract
View article
PDF
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models with many variables. A solution to this problem is to use informative priors in order to shrink the richly parameterized unrestricted model toward a parsimonious naıve benchmark, and thus reduce estimation uncertainty. This paper studies the optimal choice of the informativeness of these priors, which we treat as additional parameters, in the spirit of hierarchical modeling. This approach, theoretically grounded and easy to implement, greatly reduces the number and importance of subjective choices in the setting of the prior. Moreover, it performs very well in terms of both out-of-sample forecasting—as well as factor models—and accuracy in the estimation of impulse response functions.
Includes: Supplementary data