Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jasjeet S. Sekhon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
The Review of Economics and Statistics (2013) 95 (3): 932–945.
Published: 01 July 2013
Abstract
View article
PDF
This paper presents genetic matching, a method of multivariate matching that uses an evolutionary search algorithm to determine the weight each covariate is given. Both propensity score matching and matching based on Mahalanobis distance are limiting cases of this method. The algorithm makes transparent certain issues that all matching methods must confront. We present simulation studies that show that the algorithm improves covariate balance and that it may reduce bias if the selection on observables assumption holds. We then present a reanalysis of a number of data sets in the LaLonde (1986) controversy.