Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Yaraslau V. Zayats
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
The Review of Economics and Statistics (2008) 90 (3): 406–413.
Published: 01 August 2008
Abstract
View article
PDF
Empirical researchers sometimes misinterpret how additional regressors, heterogeneity corrections, and multilevel factors impact the interpretation of the estimated parameters in binary outcome models such as logit and probit. This can result in incorrect inferences about the importance of incorporating such features in these nonlinear statistical models. Some reports of biases in binary outcome models appear related to the arbitrary variance normalization required in binary outcome models. A focus on readily interpretable numerical quantities, rather than conveniently chosen “effects” as measured by arbitrarily scaled coefficients, would eliminate nearly all of the interpretation problems we highlight in this paper.