Abstract

Video captioning has attracted an increasing amount of interest, due in part to its potential for improved accessibility and information retrieval. While existing methods rely on different kinds of visual features and model architectures, they do not make full use of pertinent semantic cues. We present a unified and extensible framework to jointly leverage multiple sorts of visual features and semantic attributes. Our novel architecture builds on LSTMs with two multi-faceted attention layers. These first learn to automatically select the most salient visual features or semantic attributes, and then yield overall representations for the input and output of the sentence generation component via custom feature scaling operations. Experimental results on the challenging MSVD and MSR-VTT datasets show that our framework outperforms previous work and performs robustly even in the presence of added noise to the features and attributes.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.