Abstract

Neural encoder-decoder models of machine translation have achieved impressive results, while learning linguistic knowledge of both the source and target languages in an implicit end-to-end manner. We propose a framework in which our model begins learning syntax and translation interleaved, gradually putting more focus on translation. Using this approach, we achieve considerable improvements in terms of BLEU score on relatively large parallel corpus (WMT14 English to German) and a low-resource (WIT German to English) setup.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.