Decoding of phrase-based translation models in the general case is known to be NP-complete, by a reduction from the traveling salesman problem (Knight, 1999). In practice, phrase-based systems often impose a hard distortion limit that limits the movement of phrases during translation. However, the impact on complexity after imposing such a constraint is not well studied. In this paper, we describe a dynamic programming algorithm for phrase-based decoding with a fixed distortion limit. The runtime of the algorithm is O(nd!lhd+1) where n is the sentence length, d is the distortion limit, l is a bound on the number of phrases starting at any position in the sentence, and h is related to the maximum number of target language translations for any source word. The algorithm makes use of a novel representation that gives a new perspective on decoding of phrase-based models.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.