Abstract

Both bottom-up and top-down strategies have been used for neural transition-based constituent parsing. The parsing strategies differ in terms of the order in which they recognize productions in the derivation tree, where bottom-up strategies and top-down strategies take post-order and pre-order traversal over trees, respectively. Bottom-up parsers benefit from rich features from readily built partial parses, but lack lookahead guidance in the parsing process; top-down parsers benefit from non-local guidance for local decisions, but rely on a strong encoder over the input to predict a constituent hierarchy before its construction. To mitigate both issues, we propose a novel parsing system based on in-order traversal over syntactic trees, designing a set of transition actions to find a compromise between bottom-up constituent information and top-down lookahead information. Based on stack-LSTM, our psycholinguistically motivated constituent parsing system achieves 91.8 F1 on the WSJ benchmark. Furthermore, the system achieves 93.6 F1 with supervised reranking and 94.2 F1 with semi-supervised reranking, which are the best results on the WSJ benchmark.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.