Abstract

Morpho-syntactic lexicons provide information about the morphological and syntactic roles of words in a language. Such lexicons are not available for all languages and even when available, their coverage can be limited. We present a graph-based semi-supervised learning method that uses the morphological, syntactic and semantic relations between words to automatically construct wide coverage lexicons from small seed sets. Our method is language-independent, and we show that we can expand a 1000 word seed lexicon to more than 100 times its size with high quality for 11 languages. In addition, the automatically created lexicons provide features that improve performance in two downstream tasks: morphological tagging and dependency parsing.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.