Abstract
The Tier-based Strictly 2-Local (TSL2) languages are a class of formal languages which have been shown to model long-distance phonotactic generalizations in natural language (Heinz et al., 2011). This paper introduces the Tier-based Strictly 2-Local Inference Algorithm (2TSLIA), the first nonenumerative learner for the TSL2 languages. We prove the 2TSLIA is guaranteed to converge in polynomial time on a data sample whose size is bounded by a constant.
This content is only available as a PDF.
©2016 Association for Computational Linguistics. Distributed
under a CC-BY 4.0 license.
2016
Association for Computational Linguistics
This is an open-access article distributed under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits you to copy and redistribute in any medium or format,
for non-commercial use only, provided that the original work is not remixed,
transformed, or built upon, and that appropriate credit to the original
source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.