Automatic satire detection is a subtle text classification task, for machines and at times, even for humans. In this paper we argue that satire detection should be approached using common-sense inferences, rather than traditional text classification methods. We present a highly structured latent variable model capturing the required inferences. The model abstracts over the specific entities appearing in the articles, grouping them into generalized categories, thus allowing the model to adapt to previously unseen situations.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit