Abstract

We present a dynamic programming algorithm for efficient constrained inference in semantic role labeling. The algorithm tractably captures a majority of the structural constraints examined by prior work in this area, which has resorted to either approximate methods or off-the-shelf integer linear programming solvers. In addition, it allows training a globally-normalized log-linear model with respect to constrained conditional likelihood. We show that the dynamic program is several times faster than an off-the-shelf integer linear programming solver, while reaching the same solution. Furthermore, we show that our structured model results in significant improvements over its local counterpart, achieving state-of-the-art results on both PropBank- and FrameNet-annotated corpora.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.