Lexical embeddings can serve as useful representations for words for a variety of NLP tasks, but learning embeddings for phrases can be challenging. While separate embeddings are learned for each word, this is infeasible for every phrase. We construct phrase embeddings by learning how to compose word embeddings using features that capture phrase structure and context. We propose efficient unsupervised and task-specific learning objectives that scale our model to large datasets. We demonstrate improvements on both language modeling and several phrase semantic similarity tasks with various phrase lengths. We make the implementation of our model and the datasets available for general use.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.