We present an approach to learning a model-theoretic semantics for natural language tied to Freebase. Crucially, our approach uses an open predicate vocabulary, enabling it to produce denotations for phrases such as “Republican front-runner from Texas” whose semantics cannot be represented using the Freebase schema. Our approach directly converts a sentence’s syntactic CCG parse into a logical form containing predicates derived from the words in the sentence, assigning each word a consistent semantics across sentences. This logical form is evaluated against a learned probabilistic database that defines a distribution over denotations for each textual predicate. A training phase produces this probabilistic database using a corpus of entity-linked text and probabilistic matrix factorization with a novel ranking objective function. We evaluate our approach on a compositional question answering task where it outperforms several competitive baselines. We also compare our approach against manually annotated Freebase queries, finding that our open predicate vocabulary enables us to answer many questions that Freebase cannot.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.