Abstract
We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.
This content is only available as a PDF.
©2014 Association for Computational
Linguistics.
2014
Association for Computational Linguistics
This is an open-access article distributed under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits you to copy and redistribute in any medium or format,
for non-commercial use only, provided that the original work is not remixed,
transformed, or built upon, and that appropriate credit to the original
source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.