Abstract
We present a probabilistic language model that captures temporal dynamics and conditions on arbitrary non-linguistic context features. These context features serve as important indicators of language changes that are otherwise difficult to capture using text data by itself. We learn our model in an efficient online fashion that is scalable for large, streaming data. With five streaming datasets from two different genres—economics news articles and social media—we evaluate our model on the task of sequential language modeling. Our model consistently outperforms competing models.
This content is only available as a PDF.
©2014 Association for Computational
Linguistics.
2014
Association for Computational Linguistics
This is an open-access article distributed under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits you to copy and redistribute in any medium or format,
for non-commercial use only, provided that the original work is not remixed,
transformed, or built upon, and that appropriate credit to the original
source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.