Abstract

Standard agreement measures for interannotator reliability are neither necessary nor sufficient to ensure a high quality corpus. In a case study of word sense annotation, conventional methods for evaluating labels from trained annotators are contrasted with a probabilistic annotation model applied to crowdsourced data. The annotation model provides far more information, including a certainty measure for each gold standard label; the crowdsourced data was collected at less than half the cost of the conventional approach.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.