Annotated data is prerequisite for many NLP applications. Acquiring large-scale annotated corpora is a major bottleneck, requiring significant time and resources. Recent work has proposed turning annotation into a game to increase its appeal and lower its cost; however, current games are largely text-based and closely resemble traditional annotation tasks. We propose a new linguistic annotation paradigm that produces annotations from playing graphical video games. The effectiveness of this design is demonstrated using two video games: one to create a mapping from WordNet senses to images, and a second game that performs Word Sense Disambiguation. Both games produce accurate results. The first game yields annotation quality equal to that of experts and a cost reduction of 73% over equivalent crowdsourcing; the second game provides a 16.3% improvement in accuracy over current state-of-the-art sense disambiguation games with WordNet.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.