Abstract

We present a joint model of three core tasks in the entity analysis stack: coreference resolution (within-document clustering), named entity recognition (coarse semantic typing), and entity linking (matching to Wikipedia entities). Our model is formally a structured conditional random field. Unary factors encode local features from strong baselines for each task. We then add binary and ternary factors to capture cross-task interactions, such as the constraint that coreferent mentions have the same semantic type. On the ACE 2005 and OntoNotes datasets, we achieve state-of-the-art results for all three tasks. Moreover, joint modeling improves performance on each task over strong independent baselines.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.