This paper proposes a discriminative forest reranking algorithm for dependency parsing that can be seen as a form of efficient stacked parsing. A dynamic programming shift-reduce parser produces a packed derivation forest which is then scored by a discriminative reranker, using the 1-best tree output by the shift-reduce parser as guide features in addition to third-order graph-based features. To improve efficiency and accuracy, this paper also proposes a novel shift-reduce parser that eliminates the spurious ambiguity of arc-standard transition systems. Testing on the English Penn Treebank data, forest reranking gave a state-of-the-art unlabeled dependency accuracy of 93.12.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit