In current research, most tree-based translation models are built directly from parse trees. In this study, we go in another direction and build a translation model with an unsupervised tree structure derived from a novel non-parametric Bayesian model. In the model, we utilize synchronous tree substitution grammars (STSG) to capture the bilingual mapping between language pairs. To train the model efficiently, we develop a Gibbs sampler with three novel Gibbs operators. The sampler is capable of exploring the infinite space of tree structures by performing local changes on the tree nodes. Experimental results show that the string-to-tree translation system using our Bayesian tree structures significantly outperforms the strong baseline string-to-tree system using parse trees.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.