Abstract

This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semi-supervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar, then use a small labelled data set to select which potential morph boundaries identified by the metagrammar should be returned in the final output. We evaluate on five languages and show that semi-supervised training provides a boost over unsupervised training, while the model selection method yields the best average results over all languages and is competitive with state-of-the-art semi-supervised systems. Moreover, this method provides the potential to tune performance according to different evaluation metrics or downstream tasks.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.