Joint morphological and syntactic analysis has been proposed as a way of improving parsing accuracy for richly inflected languages. Starting from a transition-based model for joint part-of-speech tagging and dependency parsing, we explore different ways of integrating morphological features into the model. We also investigate the use of rule-based morphological analyzers to provide hard or soft lexical constraints and the use of word clusters to tackle the sparsity of lexical features. Evaluation on five morphologically rich languages (Czech, Finnish, German, Hungarian, and Russian) shows consistent improvements in both morphological and syntactic accuracy for joint prediction over a pipeline model, with further improvements thanks to lexical constraints and word clusters. The final results improve the state of the art in dependency parsing for all languages.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.