Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Aida Mostafazadeh Davani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 300–319.
Published: 22 March 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Social stereotypes negatively impact individuals’ judgments about different groups and may have a critical role in understanding language directed toward marginalized groups. Here, we assess the role of social stereotypes in the automated detection of hate speech in the English language by examining the impact of social stereotypes on annotation behaviors, annotated datasets, and hate speech classifiers. Specifically, we first investigate the impact of novice annotators’ stereotypes on their hate-speech-annotation behavior. Then, we examine the effect of normative stereotypes in language on the aggregated annotators’ judgments in a large annotated corpus. Finally, we demonstrate how normative stereotypes embedded in language resources are associated with systematic prediction errors in a hate-speech classifier. The results demonstrate that hate-speech classifiers reflect social stereotypes against marginalized groups, which can perpetuate social inequalities when propagated at scale. This framework, combining social-psychological and computational-linguistic methods, provides insights into sources of bias in hate-speech moderation, informing ongoing debates regarding machine learning fairness.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 92–110.
Published: 31 January 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Majority voting and averaging are common approaches used to resolve annotator disagreements and derive single ground truth labels from multiple annotations. However, annotators may systematically disagree with one another, often reflecting their individual biases and values, especially in the case of subjective tasks such as detecting affect, aggression, and hate speech. Annotator disagreements may capture important nuances in such tasks that are often ignored while aggregating annotations to a single ground truth. In order to address this, we investigate the efficacy of multi-annotator models. In particular, our multi-task based approach treats predicting each annotators’ judgements as separate subtasks, while sharing a common learned representation of the task. We show that this approach yields same or better performance than aggregating labels in the data prior to training across seven different binary classification tasks. Our approach also provides a way to estimate uncertainty in predictions, which we demonstrate better correlate with annotation disagreements than traditional methods. Being able to model uncertainty is especially useful in deployment scenarios where knowing when not to make a prediction is important.