Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Anne Lauscher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 1755–1779.
Published: 23 December 2024
FIGURES
| View All (13)
Abstract
View article
PDF
Robust, faithful, and harm-free pronoun use for individuals is an important goal for language model development as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity : Given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF , a carefully designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 model variants from nine popular families, across architectures (encoder-only, decoder-only, and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her , singular they , and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one sentence with a distractor pronoun causes accuracy to drop on average by 34 percentage points. Our results show that pronoun fidelity is not robust, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 1392–1422.
Published: 22 December 2022
FIGURES
Abstract
View article
PDF
Despite extensive research efforts in recent years, computational argumentation (CA) remains one of the most challenging areas of natural language processing. The reason for this is the inherent complexity of the cognitive processes behind human argumentation, which integrate a plethora of different types of knowledge, ranging from topic-specific facts and common sense to rhetorical knowledge. The integration of knowledge from such a wide range in CA requires modeling capabilities far beyond many other natural language understanding tasks. Existing research on mining, assessing, reasoning over, and generating arguments largely acknowledges that much more knowledge is needed to accurately model argumentation computationally. However, a systematic overview of the types of knowledge introduced in existing CA models is missing, hindering targeted progress in the field. Adopting the operational definition of knowledge as any task-relevant normative information not provided as input, the survey paper at hand fills this gap by (1) proposing a taxonomy of types of knowledge required in CA tasks, (2) systematizing the large body of CA work according to the reliance on and exploitation of these knowledge types for the four main research areas in CA, and (3) outlining and discussing directions for future research efforts in CA.