Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Brian
D. Ziebart
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 59–71.
Published: 01 January 2015
Abstract
View article
PDF
Word sense induction (WSI) seeks to automatically discover the senses of a word in a corpus via unsupervised methods. We propose a sense-topic model for WSI, which treats sense and topic as two separate latent variables to be inferred jointly. Topics are informed by the entire document, while senses are informed by the local context surrounding the ambiguous word. We also discuss unsupervised ways of enriching the original corpus in order to improve model performance, including using neural word embeddings and external corpora to expand the context of each data instance. We demonstrate significant improvements over the previous state-of-the-art, achieving the best results reported to date on the SemEval-2013 WSI task.