Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Can Ma
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 1556–1577.
Published: 27 November 2024
FIGURES
Abstract
View article
PDF
Large Language Models (LLMs) have transformed natural language processing tasks successfully. Yet, their large size and high computational needs pose challenges for practical use, especially in resource-limited settings. Model compression has emerged as a key research area to address these challenges. This paper presents a survey of model compression techniques for LLMs. We cover methods like quantization, pruning, and knowledge distillation, highlighting recent advancements. We also discuss benchmarking strategies and evaluation metrics crucial for assessing compressed LLMs. This survey offers valuable insights for researchers and practitioners, aiming to enhance efficiency and real-world applicability of LLMs while laying a foundation for future advancements.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 210–228.
Published: 08 March 2024
FIGURES
| View All (8)
Abstract
View article
PDF
Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performance. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different D2T generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/unid2t .