Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-6 of 6
Chris Callison-Burch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 714–728.
Published: 01 December 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Many natural language processing tasks require discriminating the particular meaning of a word in context, but building corpora for developing sense-aware models can be a challenge. We present a large resource of example usages for words having a particular meaning, called Paraphrase-Sense-Tagged Sentences (PSTS). Built on the premise that a word’s paraphrases instantiate its fine-grained meanings (i.e., bug has different meanings corresponding to its paraphrases fly and microbe ) the resource contains up to 10,000 sentences for each of 3 million target-paraphrase pairs where the target word takes on the meaning of the paraphrase. We describe an automatic method based on bilingual pivoting used to enumerate sentences for PSTS, and present two models for ranking PSTS sentences based on their quality. Finally, we demonstrate the utility of PSTS by using it to build a dataset for the task of hypernym prediction in context. Training a model on this automatically generated dataset produces accuracy that is competitive with a model trained on smaller datasets crafted with some manual effort.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 401–415.
Published: 01 July 2016
Abstract
View article
PDF
Most recent sentence simplification systems use basic machine translation models to learn lexical and syntactic paraphrases from a manually simplified parallel corpus. These methods are limited by the quality and quantity of manually simplified corpora, which are expensive to build. In this paper, we conduct an in-depth adaptation of statistical machine translation to perform text simplification, taking advantage of large-scale paraphrases learned from bilingual texts and a small amount of manual simplifications with multiple references. Our work is the first to design automatic metrics that are effective for tuning and evaluating simplification systems, which will facilitate iterative development for this task.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 283–297.
Published: 01 May 2015
Abstract
View article
PDF
Simple Wikipedia has dominated simplification research in the past 5 years. In this opinion paper, we argue that focusing on Wikipedia limits simplification research. We back up our arguments with corpus analysis and by highlighting statements that other researchers have made in the simplification literature. We introduce a new simplification dataset that is a significant improvement over Simple Wikipedia, and present a novel quantitative-comparative approach to study the quality of simplification data resources.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 435–448.
Published: 01 October 2014
Abstract
View article
PDF
We present M ulti P (Multi-instance Learning Paraphrase Model), a new model suited to identify paraphrases within the short messages on Twitter. We jointly model paraphrase relations between word and sentence pairs and assume only sentence-level annotations during learning. Using this principled latent variable model alone, we achieve the performance competitive with a state-of-the-art method which combines a latent space model with a feature-based supervised classifier. Our model also captures lexically divergent paraphrases that differ from yet complement previous methods; combining our model with previous work significantly outperforms the state-of-the-art. In addition, we present a novel annotation methodology that has allowed us to crowdsource a paraphrase corpus from Twitter. We make this new dataset available to the research community.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 79–92.
Published: 01 February 2014
Abstract
View article
PDF
We present a large scale study of the languages spoken by bilingual workers on Mechanical Turk (MTurk). We establish a methodology for determining the language skills of anonymous crowd workers that is more robust than simple surveying. We validate workers’ self-reported language skill claims by measuring their ability to correctly translate words, and by geolocating workers to see if they reside in countries where the languages are likely to be spoken. Rather than posting a one-off survey, we posted paid tasks consisting of 1,000 assignments to translate a total of 10,000 words in each of 100 languages. Our study ran for several months, and was highly visible on the MTurk crowdsourcing platform, increasing the chances that bilingual workers would complete it. Our study was useful both to create bilingual dictionaries and to act as census of the bilingual speakers on MTurk. We use this data to recommend languages with the largest speaker populations as good candidates for other researchers who want to develop crowdsourced, multilingual technologies. To further demonstrate the value of creating data via crowdsourcing, we hire workers to create bilingual parallel corpora in six Indian languages, and use them to train statistical machine translation systems.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2013) 1: 165–178.
Published: 01 May 2013
Abstract
View article
PDF
Machine translation (MT) draws from several different disciplines, making it a complex subject to teach. There are excellent pedagogical texts, but problems in MT and current algorithms for solving them are best learned by doing. As a centerpiece of our MT course, we devised a series of open-ended challenges for students in which the goal was to improve performance on carefully constrained instances of four key MT tasks: alignment, decoding, evaluation, and reranking. Students brought a diverse set of techniques to the problems, including some novel solutions which performed remarkably well. A surprising and exciting outcome was that student solutions or their combinations fared competitively on some tasks, demonstrating that even newcomers to the field can help improve the state-of-the-art on hard NLP problems while simultaneously learning a great deal. The problems, baseline code, and results are freely available.