Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Claire Gardent
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 429–446.
Published: 26 April 2021
FIGURES
Abstract
View article
PDF
The metrics standardly used to evaluate Natural Language Generation (NLG) models, such as BLEU or METEOR, fail to provide information on which linguistic factors impact performance. Focusing on Surface Realization (SR), the task of converting an unordered dependency tree into a well-formed sentence, we propose a framework for error analysis which permits identifying which features of the input affect the models’ results. This framework consists of two main components: (i) correlation analyses between a wide range of syntactic metrics and standard performance metrics and (ii) a set of techniques to automatically identify syntactic constructs that often co-occur with low performance scores. We demonstrate the advantages of our framework by performing error analysis on the results of 174 system runs submitted to the Multilingual SR shared tasks; we show that dependency edge accuracy correlate with automatic metrics thereby providing a more interpretable basis for evaluation; and we suggest ways in which our framework could be used to improve models and data. The framework is available in the form of a toolkit which can be used both by campaign organizers to provide detailed, linguistically interpretable feedback on the state of the art in multilingual SR, and by individual researchers to improve models and datasets. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 82–99.
Published: 01 March 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Various machine learning tasks can benefit from access to external information of different modalities, such as text and images. Recent work has focused on learning architectures with large memories capable of storing this knowledge. We propose augmenting generative Transformer neural networks with KNN-based Information Fetching (KIF) modules. Each KIF module learns a read operation to access fixed external knowledge. We apply these modules to generative dialog modeling, a challenging task where information must be flexibly retrieved and incorporated to maintain the topic and flow of conversation. We demonstrate the effectiveness of our approach by identifying relevant knowledge required for knowledgeable but engaging dialog from Wikipedia, images, and human-written dialog utterances, and show that leveraging this retrieved information improves model performance, measured by automatic and human evaluation.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 589–604.
Published: 01 September 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Recent graph-to-text models generate text from graph-based data using either global or local aggregation to learn node representations. Global node encoding allows explicit communication between two distant nodes, thereby neglecting graph topology as all nodes are directly connected. In contrast, local node encoding considers the relations between neighbor nodes capturing the graph structure, but it can fail to capture long-range relations. In this work, we gather both encoding strategies, proposing novel neural models that encode an input graph combining both global and local node contexts, in order to learn better contextualized node embeddings. In our experiments, we demonstrate that our approaches lead to significant improvements on two graph-to-text datasets achieving BLEU scores of 18.01 on the AGENDA dataset, and 63.69 on the WebNLG dataset for seen categories, outperforming state-of-the-art models by 3.7 and 3.1 points, respectively. 1