Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Courtney Napoles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 551–566.
Published: 01 September 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Until now, grammatical error correction (GEC) has been primarily evaluated on text written by non-native English speakers, with a focus on student essays. This paper enables GEC development on text written by native speakers by providing a new data set and metric. We present a multiple-reference test corpus for GEC that includes 4,000 sentences in two new domains ( formal and informal writing by native English speakers) and 2,000 sentences from a diverse set of non-native student writing . We also collect human judgments of several GEC systems on this new test set and perform a meta-evaluation, assessing how reliable automatic metrics are across these domains. We find that commonly used GEC metrics have inconsistent performance across domains, and therefore we propose a new ensemble metric that is robust on all three domains of text.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 401–415.
Published: 01 July 2016
Abstract
View article
PDF
Most recent sentence simplification systems use basic machine translation models to learn lexical and syntactic paraphrases from a manually simplified parallel corpus. These methods are limited by the quality and quantity of manually simplified corpora, which are expensive to build. In this paper, we conduct an in-depth adaptation of statistical machine translation to perform text simplification, taking advantage of large-scale paraphrases learned from bilingual texts and a small amount of manual simplifications with multiple references. Our work is the first to design automatic metrics that are effective for tuning and evaluating simplification systems, which will facilitate iterative development for this task.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 169–182.
Published: 01 May 2016
Abstract
View article
PDF
The field of grammatical error correction (GEC) has grown substantially in recent years, with research directed at both evaluation metrics and improved system performance against those metrics. One unvisited assumption, however, is the reliance of GEC evaluation on error-coded corpora, which contain specific labeled corrections. We examine current practices and show that GEC’s reliance on such corpora unnaturally constrains annotation and automatic evaluation, resulting in (a) sentences that do not sound acceptable to native speakers and (b) system rankings that do not correlate with human judgments. In light of this, we propose an alternate approach that jettisons costly error coding in favor of unannotated, whole-sentence rewrites. We compare the performance of existing metrics over different gold-standard annotations, and show that automatic evaluation with our new annotation scheme has very strong correlation with expert rankings (ρ = 0.82). As a result, we advocate for a fundamental and necessary shift in the goal of GEC, from correcting small, labeled error types, to producing text that has native fluency .
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 283–297.
Published: 01 May 2015
Abstract
View article
PDF
Simple Wikipedia has dominated simplification research in the past 5 years. In this opinion paper, we argue that focusing on Wikipedia limits simplification research. We back up our arguments with corpus analysis and by highlighting statements that other researchers have made in the simplification literature. We introduce a new simplification dataset that is a significant improvement over Simple Wikipedia, and present a novel quantitative-comparative approach to study the quality of simplification data resources.