Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Cristina Aggazzotti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 875–891.
Published: 15 July 2024
FIGURES
Abstract
View article
PDF
Authorship verification is the task of determining if two distinct writing samples share the same author and is typically concerned with the attribution of written text. In this paper, we explore the attribution of transcribed speech , which poses novel challenges. The main challenge is that many stylistic features, such as punctuation and capitalization, are not informative in this setting. On the other hand, transcribed speech exhibits other patterns, such as filler words and backchannels (e.g., um , uh-huh ), which may be characteristic of different speakers. We propose a new benchmark for speaker attribution focused on human-transcribed conversational speech transcripts. To limit spurious associations of speakers with topic, we employ both conversation prompts and speakers participating in the same conversation to construct verification trials of varying difficulties. We establish the state of the art on this new benchmark by comparing a suite of neural and non-neural baselines, finding that although written text attribution models achieve surprisingly good performance in certain settings, they perform markedly worse as conversational topic is increasingly controlled. We present analyses of the impact of transcription style on performance as well as the ability of fine-tuning on speech transcripts to improve performance. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1416–1431.
Published: 16 November 2023
FIGURES
| View All (11)
Abstract
View article
PDF
Automatically disentangling an author’s style from the content of their writing is a longstanding and possibly insurmountable problem in computational linguistics. At the same time, the availability of large text corpora furnished with author labels has recently enabled learning authorship representations in a purely data-driven manner for authorship attribution, a task that ostensibly depends to a greater extent on encoding writing style than encoding content. However, success on this surrogate task does not ensure that such representations capture writing style since authorship could also be correlated with other latent variables, such as topic. In an effort to better understand the nature of the information these representations convey, and specifically to validate the hypothesis that they chiefly encode writing style, we systematically probe these representations through a series of targeted experiments. The results of these experiments suggest that representations learned for the surrogate authorship prediction task are indeed sensitive to writing style. As a consequence, authorship representations may be expected to be robust to certain kinds of data shift, such as topic drift over time. Additionally, our findings may open the door to downstream applications that require stylistic representations, such as style transfer.