Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Dan Goldwasser
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 100–119.
Published: 01 March 2021
FIGURES
| View All (7)
Abstract
View article
PDF
Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic methods, with the expressiveness of neural networks. However, most of the existing frameworks for combining neural and symbolic representations have been designed for classic relational learning tasks that work over a universe of symbolic entities and relations. In this paper, we present DRaiL , an open-source declarative framework for specifying deep relational models, designed to support a variety of NLP scenarios. Our framework supports easy integration with expressive language encoders, and provides an interface to study the interactions between representation, inference and learning.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 537–549.
Published: 01 December 2016
Abstract
View article
PDF
Automatic satire detection is a subtle text classification task, for machines and at times, even for humans. In this paper we argue that satire detection should be approached using common-sense inferences, rather than traditional text classification methods. We present a highly structured latent variable model capturing the required inferences. The model abstracts over the specific entities appearing in the articles, grouping them into generalized categories, thus allowing the model to adapt to previously unseen situations.