Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Daniel Deutsch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1132–1146.
Published: 27 October 2021
FIGURES
| View All (6)
Abstract
View article
PDF
The quality of a summarization evaluation metric is quantified by calculating the correlation between its scores and human annotations across a large number of summaries. Currently, it is unclear how precise these correlation estimates are, nor whether differences between two metrics’ correlations reflect a true difference or if it is due to mere chance. In this work, we address these two problems by proposing methods for calculating confidence intervals and running hypothesis tests for correlations using two resampling methods, bootstrapping and permutation. After evaluating which of the proposed methods is most appropriate for summarization through two simulation experiments, we analyze the results of applying these methods to several different automatic evaluation metrics across three sets of human annotations. We find that the confidence intervals are rather wide, demonstrating high uncertainty in the reliability of automatic metrics. Further, although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do so in some evaluation settings. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 774–789.
Published: 02 August 2021
FIGURES
| View All (6)
Abstract
View article
PDF
A desirable property of a reference-based evaluation metric that measures the content quality of a summary is that it should estimate how much information that summary has in common with a reference. Traditional text overlap based metrics such as ROUGE fail to achieve this because they are limited to matching tokens, either lexically or via embeddings. In this work, we propose a metric to evaluate the content quality of a summary using question-answering (QA). QA-based methods directly measure a summary’s information overlap with a reference, making them fundamentally different than text overlap metrics. We demonstrate the experimental benefits of QA-based metrics through an analysis of our proposed metric, QAEval. QAEval outperforms current state-of-the-art metrics on most evaluations using benchmark datasets, while being competitive on others due to limitations of state-of-the-art models. Through a careful analysis of each component of QAEval, we identify its performance bottlenecks and estimate that its potential upper-bound performance surpasses all other automatic metrics, approaching that of the gold-standard Pyramid Method. 1