Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Daniel Hsu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 1441–1459.
Published: 18 November 2024
FIGURES
| View All (4)
Abstract
View article
PDF
Weakly supervised learning aims to reduce the cost of labeling data by using expert-designed labeling rules. However, existing methods require experts to design effective rules in a single shot, which is difficult in the absence of proper guidance and tooling. Therefore, it is still an open question whether experts should spend their limited time writing rules or instead providing instance labels via active learning. In this paper, we investigate how to exploit an expert’s limited time to create effective supervision. First, to develop practical guidelines for rule creation, we conduct an exploratory analysis of diverse collections of existing expert-designed rules and find that rule precision is more important than coverage across datasets. Second, we compare rule creation to individual instance labeling via active learning and demonstrate the importance of both across 6 datasets. Third, we propose an interactive learning framework, INTERVAL, that achieves efficiency by automatically extracting candidate rules based on rich patterns (e.g., by prompting a language model), and effectiveness by soliciting expert feedback on both candidate rules and individual instances. Across 6 datasets, INTERVAL outperforms state-of-the-art weakly supervised approaches by 7% in F1. Furthermore, it requires as few as 10 queries for expert feedback to reach F1 values that existing active learning methods cannot match even with 100 queries.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 245–257.
Published: 01 June 2016
Abstract
View article
PDF
We tackle unsupervised part-of-speech (POS) tagging by learning hidden Markov models (HMMs) that are particularly well-suited for the problem. These HMMs, which we call anchor HMMs , assume that each tag is associated with at least one word that can have no other tag, which is a relatively benign condition for POS tagging (e.g., “the” is a word that appears only under the determiner tag). We exploit this assumption and extend the non-negative matrix factorization framework of Arora et al. (2013) to design a consistent estimator for anchor HMMs. In experiments, our algorithm is competitive with strong baselines such as the clustering method of Brown et al. (1992) and the log-linear model of Berg-Kirkpatrick et al. (2010). Furthermore, it produces an interpretable model in which hidden states are automatically lexicalized by words.