Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
David Mimno
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 107–119.
Published: 01 February 2018
Abstract
View article
PDF
Word embeddings are increasingly being used as a tool to study word associations in specific corpora. However, it is unclear whether such embeddings reflect enduring properties of language or if they are sensitive to inconsequential variations in the source documents. We find that nearest-neighbor distances are highly sensitive to small changes in the training corpus for a variety of algorithms. For all methods, including specific documents in the training set can result in substantial variations. We show that these effects are more prominent for smaller training corpora. We recommend that users never rely on single embedding models for distance calculations, but rather average over multiple bootstrap samples, especially for small corpora.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 287–300.
Published: 01 July 2016
Abstract
View article
PDF
Rule-based stemmers such as the Porter stemmer are frequently used to preprocess English corpora for topic modeling. In this work, we train and evaluate topic models on a variety of corpora using several different stemming algorithms. We examine several different quantitative measures of the resulting models, including likelihood, coherence, model stability, and entropy. Despite their frequent use in topic modeling, we find that stemmers produce no meaningful improvement in likelihood and coherence and in fact can degrade topic stability.