Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Eduard Hovy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1407.
Published: 06 December 2021
Abstract
View article
PDF
During production of this paper, an error was introduced to the formula on the bottom of the right column of page 1020. In the last two terms of the formula, the n and m subscripts were swapped. The correct formula is: L c = ∑ n = 1 k ∑ m = n + 1 k D K L ( Q n r i ∥ Q m r i ) + D K L ( Q m r i ∥ Q n r i ) The paper has been updated.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1012–1031.
Published: 06 December 2021
FIGURES
Abstract
View article
PDF
Consistency of a model—that is, the invariance of its behavior under meaning-preserving alternations in its input—is a highly desirable property in natural language processing. In this paper we study the question: Are Pretrained Language Models (PLMs) consistent with respect to factual knowledge? To this end, we create ParaRel 🤘, a high-quality resource of cloze-style query English paraphrases. It contains a total of 328 paraphrases for 38 relations. Using ParaRel 🤘, we show that the consistency of all PLMs we experiment with is poor— though with high variance between relations. Our analysis of the representational spaces of PLMs suggests that they have a poor structure and are currently not suitable for representing knowledge robustly. Finally, we propose a method for improving model consistency and experimentally demonstrate its effectiveness. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 721–739.
Published: 02 August 2021
FIGURES
Abstract
View article
PDF
While argument mining has achieved significant success in classifying argumentative relations between statements (support, attack, and neutral), we have a limited computational understanding of logical mechanisms that constitute those relations. Most recent studies rely on black-box models, which are not as linguistically insightful as desired. On the other hand, earlier studies use rather simple lexical features, missing logical relations between statements. To overcome these limitations, our work classifies argumentative relations based on four logical and theory-informed mechanisms between two statements, namely, (i) factual consistency, (ii) sentiment coherence, (iii) causal relation, and (iv) normative relation. We demonstrate that our operationalization of these logical mechanisms classifies argumentative relations without directly training on data labeled with the relations, significantly better than several unsupervised baselines. We further demonstrate that these mechanisms also improve supervised classifiers through representation learning.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 605–620.
Published: 01 September 2020
FIGURES
| View All (5)
Abstract
View article
PDF
When an entity name contains other names within it, the identification of all combinations of names can become difficult and expensive. We propose a new method to recognize not only outermost named entities but also inner nested ones. We design an objective function for training a neural model that treats the tag sequence for nested entities as the second best path within the span of their parent entity. In addition, we provide the decoding method for inference that extracts entities iteratively from outermost ones to inner ones in an outside-to-inside way. Our method has no additional hyperparameters to the conditional random field based model widely used for flat named entity recognition tasks. Experiments demonstrate that our method performs better than or at least as well as existing methods capable of handling nested entities, achieving F1-scores of 85.82%, 84.34%, and 77.36% on ACE-2004, ACE-2005, and GENIA datasets, respectively.