Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Gerard de Melo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 173–184.
Published: 01 March 2018
Abstract
View article
PDF
Video captioning has attracted an increasing amount of interest, due in part to its potential for improved accessibility and information retrieval. While existing methods rely on different kinds of visual features and model architectures, they do not make full use of pertinent semantic cues. We present a unified and extensible framework to jointly leverage multiple sorts of visual features and semantic attributes. Our novel architecture builds on LSTMs with two multi-faceted attention layers. These first learn to automatically select the most salient visual features or semantic attributes, and then yield overall representations for the input and output of the sentence generation component via custom feature scaling operations. Experimental results on the challenging MSVD and MSR-VTT datasets show that our framework outperforms previous work and performs robustly even in the presence of added noise to the features and attributes.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 47–60.
Published: 01 February 2016
Abstract
View article
PDF
Understanding cross-cultural differences has important implications for world affairs and many aspects of the life of society. Yet, the majority of text-mining methods to date focus on the analysis of monolingual texts. In contrast, we present a statistical model that simultaneously learns a set of common topics from multilingual, non-parallel data and automatically discovers the differences in perspectives on these topics across linguistic communities. We perform a behavioural evaluation of a subset of the differences identified by our model in English and Spanish to investigate their psychological validity.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2013) 1: 279–290.
Published: 01 July 2013
Abstract
View article
PDF
Adjectives like good , great , and excellent are similar in meaning, but differ in intensity. Intensity order information is very useful for language learners as well as in several NLP tasks, but is missing in most lexical resources (dictionaries, WordNet, and thesauri). In this paper, we present a primarily unsupervised approach that uses semantics from Web-scale data (e.g., phrases like good but not excellent ) to rank words by assigning them positions on a continuous scale. We rely on Mixed Integer Linear Programming to jointly determine the ranks, such that individual decisions benefit from global information. When ranking English adjectives, our global algorithm achieves substantial improvements over previous work on both pairwise and rank correlation metrics (specifically, 70% pairwise accuracy as compared to only 56% by previous work). Moreover, our approach can incorporate external synonymy information (increasing its pairwise accuracy to 78%) and extends easily to new languages. We also make our code and data freely available.