Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Gerasimos Lampouras
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 36–52.
Published: 01 February 2021
FIGURES
Abstract
View article
PDF
Task-oriented dialogue systems typically rely on large amounts of high-quality training data or require complex handcrafted rules. However, existing datasets are often limited in size con- sidering the complexity of the dialogues. Additionally, conventional training signal in- ference is not suitable for non-deterministic agent behavior, namely, considering multiple actions as valid in identical dialogue states. We propose the Conversation Graph (ConvGraph), a graph-based representation of dialogues that can be exploited for data augmentation, multi- reference training and evaluation of non- deterministic agents. ConvGraph generates novel dialogue paths to augment data volume and diversity. Intrinsic and extrinsic evaluation across three datasets shows that data augmentation and/or multi-reference training with ConvGraph can improve dialogue success rates by up to 6.4%.