Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-5 of 5
Jacob Eisenstein
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 1138–1158.
Published: 18 October 2022
FIGURES
Abstract
View article
PDF
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the challenges and opportunities in the application of causal inference to the textual domain, with its unique properties. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects with text, encompassing settings where text is used as an outcome, treatment, or to address confounding. In addition, we explore potential uses of causal inference to improve the robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the NLP community. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 257–273.
Published: 18 March 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Many facts come with an expiration date, from the name of the President to the basketball team Lebron James plays for. However, most language models (LMs) are trained on snapshots of data collected at a specific moment in time. This can limit their utility, especially in the closed-book setting where the pretraining corpus must contain the facts the model should memorize. We introduce a diagnostic dataset aimed at probing LMs for factual knowledge that changes over time and highlight problems with LMs at either end of the spectrum—those trained on specific slices of temporal data, as well as those trained on a wide range of temporal data. To mitigate these problems, we propose a simple technique for jointly modeling text with its timestamp. This improves memorization of seen facts from the training time period, as well as calibration on predictions about unseen facts from future time periods. We also show that models trained with temporal context can be efficiently “refreshed” as new data arrives, without the need for retraining from scratch.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 329–345.
Published: 26 April 2021
FIGURES
| View All (7)
Abstract
View article
PDF
Dual encoders perform retrieval by encoding documents and queries into dense low-dimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2017) 5: 295–307.
Published: 01 August 2017
Abstract
View article
PDF
Variation in language is ubiquitous, particularly in newer forms of writing such as social media. Fortunately, variation is not random; it is often linked to social properties of the author. In this paper, we show how to exploit social networks to make sentiment analysis more robust to social language variation. The key idea is linguistic homophily : the tendency of socially linked individuals to use language in similar ways. We formalize this idea in a novel attention-based neural network architecture, in which attention is divided among several basis models, depending on the author’s position in the social network. This has the effect of smoothing the classification function across the social network, and makes it possible to induce personalized classifiers even for authors for whom there is no labeled data or demographic metadata. This model significantly improves the accuracies of sentiment analysis on Twitter and on review data.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 329–344.
Published: 01 June 2015
Abstract
View article
PDF
Discourse relations bind smaller linguistic units into coherent texts. Automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a discourse relation, because the relation may depend on links between lowerlevel components, such as entity mentions. Our solution computes distributed meaning representations for each discourse argument by composition up the syntactic parse tree. We also perform a downward compositional pass to capture the meaning of coreferent entity mentions. Implicit discourse relations are then predicted from these two representations, obtaining substantial improvements on the Penn Discourse Treebank.