Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Jaime Carbonell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 109–124.
Published: 01 January 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Cross-lingual entity linking (XEL) is the task of finding referents in a target-language knowledge base (KB) for mentions extracted from source-language texts. The first step of (X)EL is candidate generation, which retrieves a list of plausible candidate entities from the target-language KB for each mention. Approaches based on resources from Wikipedia have proven successful in the realm of relatively high-resource languages, but these do not extend well to low-resource languages with few, if any, Wikipedia pages. Recently, transfer learning methods have been shown to reduce the demand for resources in the low-resource languages by utilizing resources in closely related languages, but the performance still lags far behind their high-resource counterparts. In this paper, we first assess the problems faced by current entity candidate generation methods for low-resource XEL, then propose three improvements that (1) reduce the disconnect between entity mentions and KB entries, and (2) improve the robustness of the model to low-resource scenarios. The methods are simple, but effective: We experiment with our approach on seven XEL datasets and find that they yield an average gain of 16.9% in Top-30 gold candidate recall, compared with state-of-the-art baselines. Our improved model also yields an average gain of 7.9% in in-KB accuracy of end-to-end XEL. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2017) 5: 117–133.
Published: 01 June 2017
Abstract
View article
PDF
This paper explores extending shallow semantic parsing beyond lexical-unit triggers, using causal relations as a test case. Semantic parsing becomes difficult in the face of the wide variety of linguistic realizations that causation can take on. We therefore base our approach on the concept of constructions from the linguistic paradigm known as C onstruction G rammar (CxG). In CxG, a construction is a form/function pairing that can rely on arbitrary linguistic and semantic features. Rather than codifying all aspects of each construction’s form, as some attempts to employ CxG in NLP have done, we propose methods that offload that problem to machine learning. We describe two supervised approaches for tagging causal constructions and their arguments. Both approaches combine automatically induced pattern-matching rules with statistical classifiers that learn the subtler parameters of the constructions. Our results show that these approaches are promising: they significantly outperform naïve baselines for both construction recognition and cause and effect head matches.