Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Joshua Maynez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1754–1771.
Published: 21 December 2023
FIGURES
Abstract
View article
PDF
The availability of large, high-quality datasets has been a major driver of recent progress in question answering (QA). Such annotated datasets, however, are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon , uses a PLM to automatically generate multilingual data upon which QA models are fine-tuned, thus avoiding costly annotation. Prompt tuning the PLM with only five examples per language delivers accuracy superior to translation-based baselines; it bridges nearly 60% of the gap between an English-only baseline and a fully-supervised upper bound fine-tuned on almost 50,000 hand-labeled examples; and consistently leads to improvements compared to directly fine-tuning a QA model on labeled examples in low resource settings. Experiments on the TyDiqa-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 974–996.
Published: 15 August 2023
Abstract
View article
PDF
The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details. In this work, we advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded. We propose a new conceptualization of text plans as a sequence of question-answer (QA) pairs and enhance existing datasets (e.g., for summarization) with a QA blueprint operating as a proxy for content selection (i.e., what to say) and planning (i.e., in what order). We obtain blueprints automatically by exploiting state-of-the-art question generation technology and convert input-output pairs into input-blueprint-output tuples. We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output (e.g., as a global plan or iteratively). Evaluation across metrics and datasets demonstrates that blueprint models are more factual than alternatives which do not resort to planning and allow tighter control of the generation output.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1475–1492.
Published: 17 December 2021
FIGURES
| View All (10)
Abstract
View article
PDF
We introduce a simple but flexible mechanism to learn an intermediate plan to ground the generation of abstractive summaries. Specifically, we prepend (or prompt ) target summaries with entity chains—ordered sequences of entities mentioned in the summary. Transformer-based sequence-to-sequence models are then trained to generate the entity chain and then continue generating the summary conditioned on the entity chain and the input. We experimented with both pretraining and finetuning with this content planning objective. When evaluated on CNN/DailyMail, XSum, SAMSum, and BillSum, we demonstrate empirically that the grounded generation with the planning objective improves entity specificity and planning in summaries for all datasets, and achieves state-of-the-art performance on XSum and SAMSum in terms of rouge . Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries. By prompting the decoder with a modified content plan that drops hallucinated entities, we outperform state-of-the-art approaches for faithfulness when evaluated automatically and by humans.