Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Kabir Ahuja
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2025) 13: 121–141.
Published: 12 February 2024
FIGURES
| View All (12)
Abstract
View articletitled, Learning Syntax Without Planting Trees: Understanding Hierarchical Generalization in Transformers
View
PDF
for article titled, Learning Syntax Without Planting Trees: Understanding Hierarchical Generalization in Transformers
Transformers trained on natural language data have been shown to exhibit hierarchical generalization without explicitly encoding any structural bias. In this work, we investigate sources of inductive bias in transformer models and their training that could cause such preference for hierarchical generalization. We extensively experiment with transformers trained on five synthetic, controlled datasets using several training objectives and show that, while objectives such as sequence-to-sequence modeling, classification, etc., often fail to lead to hierarchical generalization, the language modeling objective consistently leads to transformers generalizing hierarchically. We then study how different generalization behaviors emerge during the training by conducting pruning experiments that reveal the joint existence of subnetworks within the model implementing different generalizations. Finally, we take a Bayesian perspective to understand transformers’ preference for hierarchical generalization: We establish a correlation between whether transformers generalize hierarchically on a dataset and if the simplest explanation of that dataset is provided by a hierarchical grammar compared to regular grammars exhibiting linear generalization. Overall, our work presents new insights on the origins of hierarchical generalization in transformers and provides a theoretical framework for studying generalization in language models.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 330–345.
Published: 01 June 2020
FIGURES
Abstract
View articletitled, Syntax-Guided Controlled Generation of Paraphrases
View
PDF
for article titled, Syntax-Guided Controlled Generation of Paraphrases
Given a sentence (e.g., “I like mangoes”) and a constraint (e.g., sentiment flip), the goal of controlled text generation is to produce a sentence that adapts the input sentence to meet the requirements of the constraint (e.g., “I hate mangoes”). Going beyond such simple constraints, recent work has started exploring the incorporation of complex syntactic-guidance as constraints in the task of controlled paraphrase generation. In these methods, syntactic-guidance is sourced from a separate exemplar sentence. However, these prior works have only utilized limited syntactic information available in the parse tree of the exemplar sentence. We address this limitation in the paper and propose Syntax Guided Controlled Paraphraser (SGCP), an end-to-end framework for syntactic paraphrase generation. We find that Sgcp can generate syntax-conforming sentences while not compromising on relevance. We perform extensive automated and human evaluations over multiple real-world English language datasets to demonstrate the efficacy of Sgcp over state-of-the-art baselines. To drive future research, we have made Sgcp’s source code available. 1