Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Karl Stratos
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1201–1212.
Published: 25 September 2023
FIGURES
Abstract
View article
PDF
In multitask retrieval, a single retriever is trained to retrieve relevant contexts for multiple tasks. Despite its practical appeal, naive multitask retrieval lags behind task-specific retrieval, in which a separate retriever is trained for each task. We show that it is possible to train a multitask retriever that outperforms task-specific retrievers by promoting task specialization. The main ingredients are: (1) a better choice of pretrained model—one that is explicitly optimized for multitasking—along with compatible prompting, and (2) a novel adaptive learning method that encourages each parameter to specialize in a particular task. The resulting multitask retriever is highly performant on the KILT benchmark. Upon analysis, we find that the model indeed learns parameters that are more task-specialized compared to naive multitasking without prompting or adaptive learning. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 245–257.
Published: 01 June 2016
Abstract
View article
PDF
We tackle unsupervised part-of-speech (POS) tagging by learning hidden Markov models (HMMs) that are particularly well-suited for the problem. These HMMs, which we call anchor HMMs , assume that each tag is associated with at least one word that can have no other tag, which is a relatively benign condition for POS tagging (e.g., “the” is a word that appears only under the determiner tag). We exploit this assumption and extend the non-negative matrix factorization framework of Arora et al. (2013) to design a consistent estimator for anchor HMMs. In experiments, our algorithm is competitive with strong baselines such as the clustering method of Brown et al. (1992) and the log-linear model of Berg-Kirkpatrick et al. (2010). Furthermore, it produces an interpretable model in which hidden states are automatically lexicalized by words.