Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Katherine J. Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 261–276.
Published: 17 March 2021
FIGURES
Abstract
View article
PDF
Prior studies in multilingual language modeling (e.g., Cotterell et al., 2018 ; Mielke et al., 2019 ) disagree on whether or not inflectional morphology makes languages harder to model. We attempt to resolve the disagreement and extend those studies. We compile a larger corpus of 145 Bible translations in 92 languages and a larger number of typological features. 1 We fill in missing typological data for several languages and consider corpus-based measures of morphological complexity in addition to expert-produced typological features. We find that several morphological measures are significantly associated with higher surprisal when LSTM models are trained with BPE-segmented data. We also investigate linguistically motivated subword segmentation strategies like Morfessor and Finite-State Transducers (FSTs) and find that these segmentation strategies yield better performance and reduce the impact of a language’s morphology on language modeling.