Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Kyle Gorman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 507–519.
Published: 01 November 2016
Abstract
View article
PDF
We propose two models for verbalizing numbers, a key component in speech recognition and synthesis systems. The first model uses an end-to-end recurrent neural network. The second model, drawing inspiration from the linguistics literature, uses finite-state transducers constructed with a minimal amount of training data. While both models achieve near-perfect performance, the latter model can be trained using several orders of magnitude less data than the former, making it particularly useful for low-resource languages.