Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Lifeng Jin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1537–1552.
Published: 14 December 2023
FIGURES
| View All (6)
Abstract
View article
PDF
Pretrained natural language processing (NLP) models have achieved high overall performance, but they still make systematic errors. Instead of manual error analysis, research on slice detection models (SDMs), which automatically identify underperforming groups of datapoints, has caught escalated attention in Computer Vision for both understanding model behaviors and providing insights for future model training and designing. However, little research on SDMs and quantitative evaluation of their effectiveness have been conducted on NLP tasks. Our paper fills the gap by proposing a benchmark named “ D iscover, E xplain, Im prove ( DEIm )” for classification NLP tasks along with a new SDM Edisa . Edisa discovers coherent and underperforming groups of datapoints; DEIm then unites them under human-understandable concepts and provides comprehensive evaluation tasks and corresponding quantitative metrics. The evaluation in DEIm shows that Edisa can accurately select error-prone datapoints with informative semantic features that summarize error patterns. Detecting difficult datapoints directly boosts model performance without tuning any original model parameters, showing that discovered slices are actionable for users. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 686–702.
Published: 29 June 2023
FIGURES
| View All (11)
Abstract
View article
PDF
We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact , which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects— expressiveness and groundedness —and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata 1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019 ), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 211–224.
Published: 01 April 2018
Abstract
View article
PDF
There has been recent interest in applying cognitively- or empirically-motivated bounds on recursion depth to limit the search space of grammar induction models (Ponvert et al., 2011; Noji and Johnson, 2016; Shain et al., 2016). This work extends this depth-bounding approach to probabilistic context-free grammar induction (DB-PCFG), which has a smaller parameter space than hierarchical sequence models, and therefore more fully exploits the space reductions of depth-bounding. Results for this model on grammar acquisition from transcribed child-directed speech and newswire text exceed or are competitive with those of other models when evaluated on parse accuracy. Moreover, grammars acquired from this model demonstrate a consistent use of category labels, something which has not been demonstrated by other acquisition models.