Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Lu Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 376–392.
Published: 06 April 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Accurately extracting structured content from PDFs is a critical first step for NLP over scientific papers. Recent work has improved extraction accuracy by incorporating elementary layout information, for example, each token’s 2D position on the page, into language model pretraining. We introduce new methods that explicitly model VIsual LAyout (VILA) groups , that is, text lines or text blocks, to further improve performance. In our I-VILA approach, we show that simply inserting special tokens denoting layout group boundaries into model inputs can lead to a 1.9% Macro F1 improvement in token classification. In the H-VILA approach, we show that hierarchical encoding of layout-groups can result in up to 47% inference time reduction with less than 0.8% Macro F1 loss. Unlike prior layout-aware approaches, our methods do not require expensive additional pretraining, only fine-tuning, which we show can reduce training cost by up to 95%. Experiments are conducted on a newly curated evaluation suite, S2-VLUE , that unifies existing automatically labeled datasets and includes a new dataset of manual annotations covering diverse papers from 19 scientific disciplines. Pre-trained weights, benchmark datasets, and source code are available at https://github.com/allenai/VILA .
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1213–1232.
Published: 05 November 2021
FIGURES
| View All (6)
Abstract
View article
PDF
We study controllable text summarization , which allows users to gain control on a particular attribute (e.g., length limit) of the generated summaries. In this work, we propose a novel training framework based on Constrained Markov Decision Process (CMDP), which conveniently includes a reward function along with a set of constraints , to facilitate better summarization control. The reward function encourages the generation to resemble the human-written reference, while the constraints are used to explicitly prevent the generated summaries from violating user-imposed requirements. Our framework can be applied to control important attributes of summarization, including length , covered entities , and abstractiveness , as we devise specific constraints for each of these aspects. Extensive experiments on popular benchmarks show that our CMDP framework helps generate informative summaries while complying with a given attribute’s requirement. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2017) 5: 219–232.
Published: 01 July 2017
Abstract
View article
PDF
Debate and deliberation play essential roles in politics and government, but most models presume that debates are won mainly via superior style or agenda control. Ideally, however, debates would be won on the merits, as a function of which side has the stronger arguments. We propose a predictive model of debate that estimates the effects of linguistic features and the latent persuasive strengths of different topics, as well as the interactions between the two. Using a dataset of 118 Oxford-style debates, our model’s combination of content (as latent topics) and style (as linguistic features) allows us to predict audience-adjudicated winners with 74% accuracy, significantly outperforming linguistic features alone (66%). Our model finds that winning sides employ stronger arguments, and allows us to identify the linguistic features associated with strong or weak arguments.